Итак, в предыдущем уроке мы разобрали правила сложения и вычитания матриц. Это настолько простые операции, что большинство студентов понимают их буквально с ходу.
Однако вы рано радуетесь. Халява закончилась — переходим к умножению. Сразу предупрежу: умножить две матрицы — это вовсе не перемножить числа, стоящие в клеточках с одинаковыми координатами, как бы вы могли подумать. Тут всё намного веселее. И начать придётся с предварительных определений.
Одна из важнейших характеристик матрицы — это её размер. Мы уже сто раз говорили об этом: запись $A=\left[ m\times n \right]$ означает, что в матрице ровно $m$ строк и $n$ столбцов. Как не путать строки со столбцами, мы тоже уже обсуждали. Сейчас важно другое.
Определение. Матрицы вида $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$, в которых количество столбцов в первой матрице совпадает с количеством строк во второй, называются согласованными.
Ещё раз: количество столбцов в первой матрице равно количеству строк во второй! Отсюда получаем сразу два вывода:
Кроме того, капитан очевидность как бы намекает, что квадратные матрицы одинакового размера $\left[ n\times n \right]$ согласованы всегда.
В математике, когда важен порядок перечисления объектов (например, в рассмотренном выше определении важен порядок матриц), часто говорят об упорядоченных парах. Мы встречались с ними ещё в школе: думаю, и ежу понятно, что координаты $\left( 1;0 \right)$ и $\left( 0;1 \right)$ задают разные точки на плоскости.
Так вот: координаты — это тоже упорядоченные пары, которые составляются из чисел. Но ничто не мешает составить такую пару из матриц. Тогда можно будет сказать: «Упорядоченная пара матриц $\left( A;B \right)$ является согласованной, если количество столбцов в первой матрице совпадает с количеством строк во второй».
Ну и что с того?
Рассмотрим две согласованные матрицы: $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$. И определим для них операцию умножения.
Определение. Произведение двух согласованных матриц $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$ — это новая матрица $C=\left[ m\times k \right]$, элементы которой считаются по формуле:
\[\begin{align} & {{c}_{i;j}}={{a}_{i;1}}\cdot {{b}_{1;j}}+{{a}_{i;2}}\cdot {{b}_{2;j}}+\ldots +{{a}_{i;n}}\cdot {{b}_{n;j}}= \\ & =\sum\limits_{t=1}^{n}{{{a}_{i;t}}\cdot {{b}_{t;j}}} \end{align}\]
Обозначается такое произведение стандартно: $C=A\cdot B$.
По-моему, тут всё очевидно. Дальше можно не читать. [на самом деле нет]
У тех, кто впервые видит это определение, сразу возникает два вопроса:
Что ж, обо всём по порядку. Начнём с первого вопроса. Что означают все эти индексы? И как не ошибиться при работе с реальными матрицами?
Прежде всего заметим, что длинная строчка для расчёта ${{c}_{i;j}}$ (специально поставил точку с запятой между индексами, чтобы не запутаться, но вообще их ставить не надо — я сам задолбался набирать формулу в определении) на самом деле сводится к простому правилу:
Данный процесс легко понять по картинке:
Ещё раз: фиксируем строку $i$ в первой матрице, столбец $j$ во второй матрице, перемножаем элементы с одинаковыми номерами, а затем полученные произведения складываем — получаем ${{c}_{ij}}$. И так для всех $1\le i\le m$ и $1\le j\le k$. Т.е. всего будет $m\times k$ таких «извращений».
На самом деле мы уже встречались с перемножением матриц в школьной программе, только в сильно урезанном виде. Пусть даны вектора:
\[\begin{align} & \vec{a}=\left( {{x}_{a}};{{y}_{a}};{{z}_{a}} \right); \\ & \overrightarrow{b}=\left( {{x}_{b}};{{y}_{b}};{{z}_{b}} \right). \\ \end{align}\]
Тогда их скалярным произведением будет именно сумма попарных произведений:
\[\overrightarrow{a}\times \overrightarrow{b}={{x}_{a}}\cdot {{x}_{b}}+{{y}_{a}}\cdot {{y}_{b}}+{{z}_{a}}\cdot {{z}_{b}}\]
По сути, в те далёкие годы, когда деревья были зеленее, а небо ярче, мы просто умножали вектор-строку $\overrightarrow{a}$ на вектор-столбец $\overrightarrow{b}$.
Сегодня ничего не поменялось. Просто теперь этих векторов-строк и столбцов стало больше.
Но хватит теории! Давайте посмотрим на реальные примеры. И начнём с самого простого случая — квадратных матриц.
Задача 1. Выполните умножение:
\[\left[ \begin{array}{*{35}{r}} 1 & 2 \\ -3 & 4 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 4 \\ 3 & 1 \\\end{array} \right]\]
Решение. Итак, у нас две матрицы: $A=\left[ 2\times 2 \right]$ и $B=\left[ 2\times 2 \right]$. Понятно, что они согласованы (квадратные матрицы одинакового размера всегда согласованы). Поэтому выполняем умножение:
\[\begin{align} & \left[ \begin{array}{*{35}{r}} 1 & 2 \\ -3 & 4 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 4 \\ 3 & 1 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} 1\cdot \left( -2 \right)+2\cdot 3 & 1\cdot 4+2\cdot 1 \\ -3\cdot \left( -2 \right)+4\cdot 3 & -3\cdot 4+4\cdot 1 \\\end{array} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 4 & 6 \\ 18 & -8 \\\end{array} \right]. \end{align}\]
Вот и всё!
Ответ: $\left[ \begin{array}{*{35}{r}}4 & 6 \\ 18 & -8 \\\end{array} \right]$.
Задача 2. Выполните умножение:
\[\left[ \begin{matrix} 1 & 3 \\ 2 & 6 \\\end{matrix} \right]\cdot \left[ \begin{array}{*{35}{r}}9 & 6 \\ -3 & -2 \\\end{array} \right]\]
Решение. Опять согласованные матрицы, поэтому выполняем действия:\[\]
\[\begin{align} & \left[ \begin{matrix} 1 & 3 \\ 2 & 6 \\\end{matrix} \right]\cdot \left[ \begin{array}{*{35}{r}} 9 & 6 \\ -3 & -2 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} 1\cdot 9+3\cdot \left( -3 \right) & 1\cdot 6+3\cdot \left( -2 \right) \\ 2\cdot 9+6\cdot \left( -3 \right) & 2\cdot 6+6\cdot \left( -2 \right) \\\end{array} \right]= \\ & =\left[ \begin{matrix} 0 & 0 \\ 0 & 0 \\\end{matrix} \right]. \end{align}\]
Как видим, получилась матрица, заполненная нулями
Ответ: $\left[ \begin{matrix} 0 & 0 \\ 0 & 0 \\\end{matrix} \right]$.
Из приведённых примеров очевидно, что умножение матриц — не такая уж и сложная операция. По крайней мере для квадратных матриц размера 2 на 2.
В процессе вычислений мы составили промежуточную матрицу, где прямо расписали, какие числа входят в ту или иную ячейку. Именно так и следует делать при решении настоящих задач.
В двух словах. Умножение матриц:
А теперь — всё то же самое, но более подробно.
Умножение матриц во многом напоминает классическое умножение чисел. Но есть отличия, важнейшее из которых состоит в том, что умножение матриц, вообще говоря, некоммутативно.
Рассмотрим ещё раз матрицы из задачи 1. Прямое их произведение мы уже знаем:
\[\left[ \begin{array}{*{35}{r}} 1 & 2 \\ -3 & 4 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 4 \\ 3 & 1 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}}4 & 6 \\ 18 & -8 \\\end{array} \right]\]
Но если поменять матрицы местами, то получим совсем другой результат:
\[\left[ \begin{array}{*{35}{r}} -2 & 4 \\ 3 & 1 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 1 & 2 \\ -3 & 4 \\\end{array} \right]=\left[ \begin{matrix} -14 & 4 \\ 0 & 10 \\\end{matrix} \right]\]
Получается, что $A\cdot B\ne B\cdot A$. Кроме того, операция умножения определена только для согласованных матриц $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$, но никто не гарантировал, что они останутся согласованными, если их поменять местами. Например, матрицы $\left[ 2\times 3 \right]$ и $\left[ 3\times 5 \right]$ вполне себе согласованы в указанном порядке, но те же матрицы $\left[ 3\times 5 \right]$ и $\left[ 2\times 3 \right]$, записанные в обратном порядке, уже не согласованы. Печаль.:(
Среди квадратных матриц заданного размера $n$ всегда найдутся такие, которые дают одинаковый результат как при перемножении в прямом, так и в обратном порядке. Как описать все подобные матрицы (и сколько их вообще) — тема для отдельного урока. Сегодня не будем об этом.:)
Тем не менее, умножение матриц ассоциативно:
\[\left( A\cdot B \right)\cdot C=A\cdot \left( B\cdot C \right)\]
Следовательно, когда вам надо перемножить сразу несколько матриц подряд, совсем необязательно делать это напролом: вполне возможно, что некоторые рядом стоящие матрицы при перемножении дают интересный результат. Например, нулевую матрицу, как в Задаче 2, рассмотренной выше.
В реальных задачах чаще всего приходится перемножать квадратные матрицы размера $\left[ n\times n \right]$. Множество всех таких матриц обозначается ${{M}^{n}}$ (т.е. записи $A=\left[ n\times n \right]$ и \[A\in {{M}^{n}}\] означают одно и то же), и в нём обязательно найдётся матрица $E$, которую называют единичной.
Определение. Единичная матрица размера $n$ — это такая матрица $E$, что для любой квадратной матрицы $A=\left[ n\times n \right]$ выполняется равенство:
\[A\cdot E=E\cdot A=A\]
Такая матрица всегда выглядит одинаково: на главной диагонали её стоят единицы, а во всех остальных клетках — нули.
Идём далее. Помимо ассоциативности умножение матриц ещё и дистрибутивно:
\[\begin{align} & A\cdot \left( B+C \right)=A\cdot B+A\cdot C; \\ & \left( A+B \right)\cdot C=A\cdot C+B\cdot C. \\ \end{align}\]
Другими словами, если нужно умножить одну матрицу на сумму двух других, то можно умножить её на каждую из этих «двух других», а затем результаты сложить. На практике обычно приходится выполнять обратную операцию: замечаем одинаковую матрицу, выносим её за скобку, выполняем сложение и тем самым упрощаем себе жизнь.:)
Заметьте: для описания дистрибутивности нам пришлось прописать две формулы: где сумма стоит во втором множителе и где сумма стоит в первом. Это происходит как раз из-за того, что умножение матриц некоммутативно (и вообще, в некоммутативной алгебре куча всяких приколов, которые при работе с обычными числами даже не приходят в голову). И если, допустим, вам на экзамене нужно будет расписать это свойство, то обязательно пишите обе формулы, иначе препод может немного разозлиться.
Ладно, всё это были сказки о квадратных матрицах. А что насчёт прямоугольных?
А ничего — всё то же самое, что и с квадратными.
Задача 3. Выполните умножение:
\[\left[ \begin{matrix} \begin{matrix} 5 \\ 2 \\ 3 \\\end{matrix} & \begin{matrix} 4 \\ 5 \\ 1 \\\end{matrix} \\\end{matrix} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 5 \\ 3 & 4 \\\end{array} \right]\]
Решение. Имеем две матрицы: $A=\left[ 3\times 2 \right]$ и $B=\left[ 2\times 2 \right]$. Выпишем числа, обозначающие размеры, в ряд:
\[3;\ 2;\ 2;\ 2\]
Как видим, центральные два числа совпадают. Значит, матрицы согласованы, и их можно перемножить. Причём на выходе мы получим матрицу $C=\left[ 3\times 2 \right]$:
\[\begin{align} & \left[ \begin{matrix} \begin{matrix} 5 \\ 2 \\ 3 \\\end{matrix} & \begin{matrix} 4 \\ 5 \\ 1 \\\end{matrix} \\\end{matrix} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 5 \\ 3 & 4 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} 5\cdot \left( -2 \right)+4\cdot 3 & 5\cdot 5+4\cdot 4 \\ 2\cdot \left( -2 \right)+5\cdot 3 & 2\cdot 5+5\cdot 4 \\ 3\cdot \left( -2 \right)+1\cdot 3 & 3\cdot 5+1\cdot 4 \\\end{array} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 2 & 41 \\ 11 & 30 \\ -3 & 19 \\\end{array} \right]. \end{align}\]
Всё чётко: в итоговой матрице 3 строки и 2 столбца. Вполне себе $=\left[ 3\times 2 \right]$.
Ответ: $\left[ \begin{array}{*{35}{r}} \begin{array}{*{35}{r}} 2 \\ 11 \\ -3 \\\end{array} & \begin{matrix} 41 \\ 30 \\ 19 \\\end{matrix} \\\end{array} \right]$.
Сейчас рассмотрим одно из лучших тренировочных заданий для тех, кто только начинает работать с матрицами. В нём нужно не просто перемножить какие-то две таблички, а сначала определить: допустимо ли такое умножение?
Рекомендую после прочтения задания не смотреть в решение, а сначала попробовать выполнить его самостоятельно. И затем сравнить с ответами.
Задача 4. Найдите все возможные попарные произведения матриц:
\[A=\left[ \begin{array}{*{35}{r}} \begin{matrix} 1 \\ 1 \\\end{matrix} & \begin{array}{*{35}{r}} -1 \\ 1 \\\end{array} & \begin{matrix} 2 \\ 2 \\\end{matrix} & \begin{array}{*{35}{r}} -2 \\ 2 \\\end{array} \\\end{array} \right]\]; $B=\left[ \begin{matrix} \begin{matrix} 0 \\ 2 \\ 0 \\ 4 \\\end{matrix} & \begin{matrix} 1 \\ 0 \\ 3 \\ 0 \\\end{matrix} \\\end{matrix} \right]$; $C=\left[ \begin{matrix}0 & 1 \\ 1 & 0 \\\end{matrix} \right]$.
Решение. Для начала запишем размеры матриц:
\[A=\left[ 2\times 4 \right];\ B=\left[ 4\times 2 \right];\ C=\left[ 2\times 2 \right]\]
Получаем, что матрицу $A$ можно согласовать лишь с матрицей $B$, поскольку количество столбцов у $A$ равно 4, а такое количество строк только у $B$. Следовательно, можем найти произведение:
\[A\cdot B=\left[ \begin{array}{*{35}{r}} 1 & -1 & 2 & -2 \\ 1 & 1 & 2 & 2 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 0 & 1 \\ 2 & 0 \\ 0 & 3 \\ 4 & 0 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}}-10 & 7 \\ 10 & 7 \\\end{array} \right]\]
Промежуточные шаги предлагаю выполнить читателю самостоятельно. Замечу лишь, что размер результирующей матрицы лучше определять заранее, ещё до каких-либо вычислений:
\[A \cdot B=\left[ 2\times 4 \right]\cdot \left[ 4\times 2 \right]=\left[ 2\times 2 \right]\]
Другими словами, мы просто убираем «транзитные» коэффициенты, которые обеспечивали согласованность матриц.
Какие ещё возможны варианты? Безусловно, можно найти $B\cdot A$, поскольку $B=\left[ 4\times 2 \right]$, $A=\left[ 2\times 4 \right]$, поэтому упорядоченная пара $\left( B;A \right)$ является согласованной, а размерность произведения будет:
\[B \cdot A=\left[ 4\times 2 \right]\cdot \left[ 2\times 4 \right]=\left[ 4\times 4 \right]\]
Короче говоря, на выходе будет матрица $\left[ 4\times 4 \right]$, коэффициенты которой легко считаются:
\[B\cdot A=\left[ \begin{array}{*{35}{r}} 0 & 1 \\ 2 & 0 \\ 0 & 3 \\ 4 & 0 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 1 & -1 & 2 & -2 \\ 1 & 1 & 2 & 2 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}}1 & 1 & 2 & 2 \\ 2 & -2 & 4 & -4 \\ 3 & 3 & 6 & 6 \\ 4 & -4 & 8 & -8 \\\end{array} \right]\]
Очевидно, можно согласовать ещё $C\cdot A$ и $B\cdot C$ — и всё. Поэтому просто запишем полученные произведения:
\[C\cdot A=\left[ \begin{array}{*{35}{r}} 1 & 1 & 2 & 2 \\ 1 & -1 & 2 & -2 \\\end{array} \right]\]
\[B\cdot C=\left[ \begin{array}{*{35}{r}}1 & 0 \\ 0 & 2 \\ 3 & 0 \\ 0 & 4 \\\end{array} \right]\]
Это было легко.:)
Ответ: $AB=\left[ \begin{array}{*{35}{r}} -10 & 7 \\ 10 & 7 \\\end{array} \right]$; $BA=\left[ \begin{array}{*{35}{r}} 1 & 1 & 2 & 2 \\ 2 & -2 & 4 & -4 \\ 3 & 3 & 6 & 6 \\ 4 & -4 & 8 & -8 \\\end{array} \right]$; $CA=\left[ \begin{array}{*{35}{r}} 1 & 1 & 2 & 2 \\ 1 & -1 & 2 & -2 \\\end{array} \right]$; $BC=\left[ \begin{array}{*{35}{r}}1 & 0 \\ 0 & 2 \\ 3 & 0 \\ 0 & 4 \\\end{array} \right]$.
Вообще, очень рекомендую выполнить это задание самостоятельно. И ещё одно аналогичное задание, которое есть в домашней работе. Эти простые на первый взгляд размышления помогут вам отработать все ключевые этапы умножения матриц.
Но на этом история не заканчивается. Переходим к частным случаям умножения.:)
Одной из самых распространённых матричных операций является умножение на матрицу, в которой одна строка или один столбец.
Определение. Вектор-столбец — это матрица размера $\left[ m\times 1 \right]$, т.е. состоящая из нескольких строк и только одного столбца.
Вектор-строка — это матрица размера $\left[ 1\times n \right]$, т.е. состоящая из одной строки и нескольких столбцов.
На самом деле мы уже встречались с этими объектами. Например, обычный трёхмерный вектор из стереометрии $\overrightarrow{a}=\left( x;y;z \right)$ — это не что иное как вектор-строка. С точки зрения теории разницы между строками и столбцами почти нет. Внимательными надо быть разве что при согласовании с окружающими матрицами-множителями.
Задача 5. Выполните умножение:
\[\left[ \begin{array}{*{35}{r}} 2 & -1 & 3 \\ 4 & 2 & 0 \\ -1 & 1 & 1 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 1 \\ 2 \\ -1 \\\end{array} \right]\]
Решение. Перед нами произведение согласованных матриц: $\left[ 3\times 3 \right]\cdot \left[ 3\times 1 \right]=\left[ 3\times 1 \right]$. Найдём это произведение:
\[\left[ \begin{array}{*{35}{r}} 2 & -1 & 3 \\ 4 & 2 & 0 \\ -1 & 1 & 1 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 1 \\ 2 \\ -1 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} 2\cdot 1+\left( -1 \right)\cdot 2+3\cdot \left( -1 \right) \\ 4\cdot 1+2\cdot 2+0\cdot 2 \\ -1\cdot 1+1\cdot 2+1\cdot \left( -1 \right) \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} -3 \\ 8 \\ 0 \\\end{array} \right]\]
Ответ: $\left[ \begin{array}{*{35}{r}}-3 \\ 8 \\ 0 \\\end{array} \right]$.
Задача 6. Выполните умножение:
\[\left[ \begin{array}{*{35}{r}} 1 & 2 & -3 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 3 & 1 & -1 \\ 4 & -1 & 3 \\ 2 & 6 & 0 \\\end{array} \right]\]
Решение. Опять всё согласовано: $\left[ 1\times 3 \right]\cdot \left[ 3\times 3 \right]=\left[ 1\times 3 \right]$. Считаем произведение:
\[\left[ \begin{array}{*{35}{r}} 1 & 2 & -3 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 3 & 1 & -1 \\ 4 & -1 & 3 \\ 2 & 6 & 0 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}}5 & -19 & 5 \\\end{array} \right]\]
На самом деле мне было в лом считать все эти три числа — посчитайте сами. А я просто запишу ответ.:)
Ответ: $\left[ \begin{matrix} 5 & -19 & 5 \\\end{matrix} \right]$.
Как видите, при умножении вектор-строки и вектор-столбца на квадратную матрицу на выходе мы всегда получаем строку или столбец того же размера. Этот факт имеет множество приложений — от решения линейных уравнений до всевозможных преобразований координат (которые в итоге тоже сводятся к системам уравнений, но давайте не будем о грустном).
Думаю, здесь всё было очевидно. Переходим к заключительной части сегодняшнего урока.
Среди всех операций умножения отдельного внимания заслуживает возведение в степень — это когда мы несколько раз умножаем один и тот же объект на самого себя. Матрицы — не исключение, их тоже можно возводить в различные степени.
Такие произведения всегда согласованы:
\[A\cdot A=\left[ n\times n \right]\cdot \left[ n\times n \right]=\left[ n\times n \right]\]
И обозначаются точно так же, как и обычные степени:
\[\begin{align} & A\cdot A={{A}^{2}}; \\ & A\cdot A\cdot A={{A}^{3}}; \\ & \underbrace{A\cdot A\cdot \ldots \cdot A}_{n}={{A}^{n}}. \\ \end{align}\]
На первый взгляд, всё просто. Посмотрим, как это выглядит на практике:
Задача 7. Возведите матрицу в указанную степень:
${{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}$
Решение. Ну ОК, давайте возводить. Сначала возведём в квадрат:
\[\begin{align} & {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{2}}=\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 1\cdot 1+1\cdot 0 & 1\cdot 1+1\cdot 1 \\ 0\cdot 1+1\cdot 0 & 0\cdot 1+1\cdot 1 \\\end{array} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 1 & 2 \\ 0 & 1 \\\end{array} \right] \end{align}\]
\[\begin{align} & {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}={{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 1 & 2 \\ 0 & 1 \\\end{array} \right]\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 1 & 3 \\ 0 & 1 \\\end{array} \right] \end{align}\]
Вот и всё.:)
Ответ: $\left[ \begin{matrix}1 & 3 \\ 0 & 1 \\\end{matrix} \right]$.
Задача 8. Возведите матрицу в указанную степень:
\[{{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{10}}\]
Решение. Вот только не надо сейчас плакать по поводу того, что «степень слишком большая», «мир не справедлив» и «преподы совсем берега потеряли». На самом деле всё легко:
\[\begin{align} & {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{10}}={{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}\cdot {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}\cdot {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left( \left[ \begin{matrix} 1 & 3 \\ 0 & 1 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 1 & 3 \\ 0 & 1 \\\end{matrix} \right] \right)\cdot \left( \left[ \begin{matrix} 1 & 3 \\ 0 & 1 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right] \right)= \\ & =\left[ \begin{matrix} 1 & 6 \\ 0 & 1 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 1 & 4 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left[ \begin{matrix} 1 & 10 \\ 0 & 1 \\\end{matrix} \right] \end{align}\]
Заметьте: во второй строчке мы использовали ассоциативность умножения. Собственно, мы использовали её и в предыдущем задании, но там это было неявно.
Ответ: $\left[ \begin{matrix} 1 & 10 \\ 0 & 1 \\\end{matrix} \right]$.
Как видите, ничего сложного в возведении матрицы в степень нет. Последний пример можно обобщить:
\[{{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{n}}=\left[ \begin{array}{*{35}{r}} 1 & n \\ 0 & 1 \\\end{array} \right]\]
Этот факт легко доказать через математическую индукцию или прямым перемножением. Однако далеко не всегда при возведении в степень можно выловить подобные закономерности. Поэтому будьте внимательны: зачастую перемножить несколько матриц «напролом» оказывается проще и быстрее, нежели искать какие-то там закономерности.
В общем, не ищите высший смысл там, где его нет. В заключение рассмотрим возведение в степень матрицы большего размера — аж $\left[ 3\times 3 \right]$.
Задача 9. Возведите матрицу в указанную степень:
\[{{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{3}}\]
Решение. Не будем искать закономерности. Работаем «напролом»:
\[{{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{3}}={{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{2}}\cdot \left[ \begin{matrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]\]
Для начала возведём эту матрицу в квадрат:
\[\begin{align} & {{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{2}}=\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \\\end{array} \right] \end{align}\]
Теперь возведём в куб:
\[\begin{align} & {{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{3}}=\left[ \begin{array}{*{35}{r}} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \\\end{array} \right]\cdot \left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \\\end{array} \right] \end{align}\]
Вот и всё. Задача решена.
Ответ: $\left[ \begin{matrix} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \\\end{matrix} \right]$.
Как видите, объём вычислений стал больше, но смысл от этого нисколько не поменялся.:)
На этом урок можно заканчивать. В следующий раз мы рассмотрим обратную операцию: по имеющемуся произведению будем искать исходные множители.
Как вы уже, наверное, догадались, речь пойдёт об обратной матрице и методах её нахождения.