По сути, эта теорема является обратной к формуле Муавра:
\[{{z}^{n}}={{\left| z \right|}^{n}}\cdot \left( \cos n\varphi +i\sin n \varphi \right)\]
Почему степень всегда одна, а корней несколько — об этом в конце урока. Сейчас для нас главное — алгоритм извлечения корня из комплексного числа. Он состоит из четырёх шагов:
Перевести комплексное число в тригонометрическую форму;
Записать общую формулу корня степени $n$;
Подставить в эту формулу $k=0$, затем $k=1$ и так до $k=n-1$.
Получим $n$ комплексных корней. Вместе они и будут ответом.
В ответе всегда будет набор из $n$ чисел. Потому что невозможно однозначно извлечь корень из комплексного числа $z\ne 0$.
Пример. Вычислить $\sqrt[3]{-8i}$.
Представим число $-8i$ в тригонометрической форме:
В ответе нужно указать все три числа: $2i$; $\sqrt{3}-i$; $-\sqrt{3}-i$.
Ещё раз: подставляя разные $k$, мы будем получать разные корни. Всего таких корней будет ровно $n$. А если взять $k$ за пределами диапазона $\left\{ 0,1,...,n-1 \right\}$, то корни начнут повторяться, и ничего нового мы не получим.
3. Геометрическая интерпретация
Если отметить на комплексной плоскости все значения корня $n$-й степени из некоторого комплексного числа $z\ne 0$, то все они будут лежать на окружности с центром в начале координат и радиусом $R=\sqrt[n]{\left| z \right|}$. Более того: эти точки образуют правильный $n$-угольник.
Отметить на комплексной плоскости все числа вида $\sqrt[3]{i}$.
Представим число $z=i$ в тригонометрической форме:
Это три точки ${{z}_{1}}$, ${{z}_{2}}$ и ${{z}_{3}}$ на окружности радиуса $R=1$:
Получили правильный треугольник. Его первая вершина лежит на пересечении окружности радиуса 1 и начального луча, который образован поворотом оси $OX$ на угол ${\pi }/{6}\;$.
Рассмотрим более сложный пример:
Отметить на комплексной плоскости все числа вида $\sqrt[4]{1+i}$.
Сразу запишем формулу корней с выделением начального луча:
Получили правильный шестиугольник со стороной 2 и начальным лучом ${\pi }/{6}\;$.
Таким образом, мы получаем «графический» алгоритм извлечения корня $n$-й степени из комплексного числа $z\ne 0$:
Перевести число в тригонометрическую форму;
Найти модуль корня: $\sqrt[n]{\left| z \right|}$ — это будет радиусом окружности;
Построить начальный луч с отклонением $\varphi ={\arg \left( z \right)}/{n}\;$;
Построить все остальные лучи с шагом ${2\pi }/{n}\;$;
Получим точки пересечения лучей с окружностью — это и есть искомые корни.
Такой алгоритм прекрасно работает, когда аргумент исходного числа и отклонение начального луча $\varphi $ — стандартные «табличные» углы вроде ${\pi }/{6}\;$. На практике чаще всего именно так и бывает. Поэтому берите на вооружение.:)
4. Почему корней всегда ровно n
С геометрической точки зрения, всё очевидно: если мы будем последовательно зачёркивать вершины правильного $n$-угольника, то ровно через $n$ шагов все вершины будут зачёркнуты. И для дальнейшего зачёркивания придётся выбирать вершину среди уже зачёркнутых.
Однако рассмотрим проблему с точки зрения алгебры. Ещё раз запишем формулу корня $n$-й степени:
Поскольку синус и косинус — периодические функции с периодом $2\pi $, ${{\omega }_{n}}={{\omega }_{0}}$, и далее корни будут повторяться. Как мы и заявляли в самом начале урока.
5. Выводы
Ключевые факты из урока.
Определение. Корень степени $n$ из комплексного числа $z$ — это такое число $\omega $, что ${{\omega }^{n}}=z$.
Обозначение. Для обозначения комплексных корней используется знакомый знак радикала: $\omega =\sqrt[n]{z}$.
Замечание. Если $z\ne 0$, таких чисел корней будет ровно $n$ штук.
Алгоритм нахождения корней состоит из двух шагов.
Шаг 1. Представить исходное число в тригонометрической форме:
\[z=\left| z \right|\cdot \left( \cos \varphi +i\sin \varphi \right)\]
Шаг 2. Воспользоваться формулой Муавра для вычисления корней:
Все полученные корни лежат на окружности радиуса $\sqrt[n]{\left| z \right|}$ с центром в начале координат и являются вершинами правильного $n$-угольника. Первая вершина лежит на т.н. «начальном луче», который отклонён от положительной полуоси $OX$ на угол ${\varphi }/{n}\;$. Остальные вершины обычно легко находятся из соображений симметрии с помощью циркуля и линейки.
Геометрическую интерпретацию можно использовать для быстрого «графического» извлечения корней. Но это требует практики и хорошего понимания, что именно и зачем вы делаете. Технология такого извлечения корней описана выше в разделе «Геометрическая интерпретация».
Всё. В следующем уроке начнём решать уравнения в комплексных числах.:)