Решая задачи по теории вероятностей, мы постоянно используем одну и ту же формулу, которая одновременно является классическим определением вероятности:
где k — число благоприятных исходов, n — общее число исходов (см. «Тест по теории вероятностей»).
И эта формула прекрасно работает до тех пор, пока задачи были легкими, а числа, стоящие в числителе и знаменателе — очевидными.
Однако последние пробные экзамены показали, что в настоящем ЕГЭ по математике могут встречаться значительно более сложные конструкции. Отыскание значений
В сегодняшнем уроке не будет строгих формулировок и длинных теорем — они слишком сложны и, к тому же, совершенно бесполезны для решения настоящих задач B6. Вместо этого мы рассмотрим простые правила и разберем конкретные задачи, которые действительно встречаются на ЕГЭ. Итак, поехали!
Пусть имеется n объектов (карандашей, конфет, бутылок водки — чего угодно), из которых требуется выбрать
ровно k различных объектов. Тогда количество вариантов такого выбора называется числом сочетанийиз n элементовпо k. Это число обозначаетсяCnk и считается по специальной формуле.Обозначение:
Выражение n! читается как «эн-факториал» и обозначает произведение всех натуральных чисел
Кроме того, в математике по определению считают,
Что дает нам эта формула? На самом деле, без нее не решается практически ни одна серьезная задача.
К сожалению, в школе совершенно не умеют работать с факториалами. Кроме того, в формуле числа сочетаний очень легко запутаться: где стоит и что обозначает
Для лучшего понимания разберем несколько простейших комбинаторных задач:
Задача. У бармена есть 6 сортов зеленого чая. Для проведения чайной церемонии требуется подать зеленый чай ровно 3 различных сортов. Сколькими способами бармен может выполнить заказ?
Тут все просто: есть n = 6 сортов, из которых надо выбрать
Задача. В группе из 20 студентов надо выбрать 2 представителей для выступления на конференции. Сколькими способами можно это сделать?
Опять же, всего у нас есть n = 20 студентов, а выбрать надо
Обратите внимание: красным цветом отмечены множители, входящие в разные факториалы. Эти множители можно безболезненно сократить и тем самым значительно уменьшить общий объем вычислений.
Задача. На склад завезли 17 серверов с различными дефектами, которые стоят в 2 раза дешевле нормальных серверов. Директор купил в школу 14 таких серверов, а сэкономленные деньги своровал и купил дочке шубу из меха соболя за 200 000 рублей. Сколькими способами директор может выбрать бракованные серверы?
В задаче довольно много лишних данных, которые могут сбить с толку. Наиболее важные факты: всего есть
Красным цветом снова обозначены множители, которые сокращаются. Итого, получилось 680 комбинаций. В общем, директору есть из чего выбрать.
Как видите, число сочетаний из n по k считается достаточно просто. Проблема в том, что многие школьники никогда не работали с факториалами. Для них это новый и незнакомый математический объект, и для его освоения требуется некоторая тренировка.
Хорошая новость состоит в том, что во многих задачах формулы
Закон умножения в комбинаторике: число сочетаний (способов, комбинаций) в независимых наборах умножается.
Другими словами, пусть имеется A способов выполнить одно действие
Задача. У Пети есть 4 монеты по 1 рублю и 2 монеты по 10 рублей. Петя, не глядя, достал из кармана 1 монету номиналом 1 рубль и еще 1 монету номиналом 10 рублей, чтобы купить сигарету за 11 рублей у бабули в подземном переходе. Сколькими способами он может выбрать эти монеты?
Итак, сначала Петя достает
Затем Петя снова лезет в карман и достает
Поскольку эти действия независимы, общее число вариантов равно
Задача. В корзине лежат 8 белых шаров и 12 черных. Сколькими способами можно достать из этой корзины 2 белых шара и 2 черных?
Всего в корзине
Кроме того, в корзине имеется
Поскольку выбор белого шара и выбор черного — события независимые, общее число комбинаций считается по закону умножения:
Закон умножения показывает, сколькими способами можно выполнить сложное действие, которое состоит из двух и более простых — при условии, что все они независимы.
Именно этой формулы многим не хватило для решения задачи B6 на пробном ЕГЭ по математике. Разумеется, существуют и другие методы решения, в которых комбинаторика не используется — и мы обязательно рассмотрим их ближе к настоящему экзамену. Однако ни один из них не сравнится по надежности и лаконичности с теми приемами, которые мы сейчас изучаем.
Если закон умножения оперирует «изолированными» событиями, которые не зависят друг от друга, то в законе сложения все наоборот. Здесь рассматриваются взаимоисключающие события, которые никогда не случаются одновременно.
Например, «Петя вынул из кармана 1 монету» и «Петя не вынул из кармана ни одной монеты» — это взаимоисключающие события, поскольку вынуть одну монету и при этом не вынуть ни одной невозможно.
Аналогично, события «Выбранный наугад шар — белый» и «Выбранный наугад шар — черный» также являются взаимоисключающими.
Закон сложения в комбинаторике: если два взаимоисключающих действия можно выполнить
A и B способами соответственно, то эти события можно объединить. При этом возникнет новое событие, которое можно выполнитьX = A + B способами.
Другими словами, при объединении взаимоисключающих действий (событий, вариантов) число их комбинаций складывается.
Можно сказать, что закон сложения — это логическое «ИЛИ» в комбинаторике, когда нас устраивает любой из взаимоисключающих вариантов. И наоборот, закон умножения — это логическое «И», при котором нас интересует одновременное выполнение и первого, и второго действия.
Задача. В корзине лежат 9 черных шаров и 7 красных. Мальчик достает 2 шара одинакового цвета. Сколькими способами он может это сделать?
Если шары одинакового цвета, то вариантов немного: оба они либо черные, либо красные. Очевидно, что эти варианты — взаимоисключающие.
В первом случае мальчику предстоит выбирать
Аналогично, во втором случае выбираем
Осталось найти общее количество способов. Поскольку варианты с черными и красными шарами — взаимоисключающие, по закону сложения имеем:
Задача. В ларьке продаются 15 роз и 18 тюльпанов. Ученик
9-го класса хочет купить 3 цветка для своей одноклассницы, причем все цветы должны быть одинаковыми. Сколькими способами он может составить такой букет?
По условию, все цветы должны быть одинаковыми. Значит, будем покупать либо 3 розы, либо 3 тюльпана. В любом случае,
В случае с розами придется выбирать
Поскольку розы и тюльпаны — это взаимоисключающие варианты, работаем по закону сложения. Получаем общее число вариантов
Очень часто в тексте задачи присутствуют дополнительные условия, накладывающие существенные ограничения на интересующие нас сочетания. Сравните два предложения:
Чувствуете разницу? В первом случае мы вправе брать любые цвета, какие нам нравятся — дополнительных ограничений нет. Во втором случае все сложнее, поскольку мы обязаны выбрать ручку красного цвета (предполагается, что она есть в исходном наборе).
Очевидно, что любые ограничения резко сокращают итоговое количество вариантов. Ну и как в этом случае найти число сочетаний? Просто запомните следующее правило:
Пусть имеется набор
из n элементов, среди которых надо выбратьk элементов. При введении дополнительных ограничений числаn и k уменьшаются на одинаковую величину.
Другими словами, если из 5 ручек надо выбрать 3, при этом одна из них должна быть красной, то выбирать придется
Теперь посмотрим, как это правило работает на конкретных примерах:
Задача. В группе из 20 студентов, среди которых 2 отличника, надо выбрать 4 человека для участия в конференции. Сколькими способами можно выбрать этих четверых, если отличники обязательно должны попасть на конференцию?
Итак, есть группа
Однако нам поставили дополнительное условие: 2 отличника должны быть среди этих четырех. Таким образом, согласно приведенному выше правилу, мы уменьшаем числа
Задача. У Пети в кармане есть 8 монет, из которых 6 монет по рублю и 2 монеты по 10 рублей. Петя перекладывает какие-то три монеты в другой карман. Сколькими способами Петя может это сделать, если известно, что обе монеты по 10 рублей оказались в другом кармане?
Итак, есть
В обоих примерах я намеренно пропустил детали работы с факториалами — попробуйте выполнить все расчеты самостоятельно. Разумеется, для этих задач существуют и другие способы решения. Например, с помощью закона умножения. В любом случае, ответ будет один и тот же.
В заключение отмечу, что в первой задаче мы получили 153 варианта — это намного меньше, чем исходные
Эти примеры наглядно демонстрируют, что введение любых ограничений значительно сокращает нашу «свободу выбора».