Метод координат — это, конечно, хороший инструмент, однако у него есть недостаток. Даже два:
Однако нет ничего невозможного. Если вы освоили метод координат, научились вычислять углы между всевозможными комбинациями прямых и плоскостей, то научиться оформлять свои выкладки — дело пяти минут. А может быть и двух — если эти выкладки немного оптимизировать.
Во многих задачах получаются весьма неслабые векторы, координаты которых содержат корни и дроби. От них можно избавиться, если помнить простое правило: при умножении вектора на число a ≠ 0 угол между этим вектором и другими не меняется.
Таким образом, вектор AB = (0,3; 0,5; 1) можно без ущерба для здоровья заменить вектором 10 · AB = (3; 5; 10). Это значительно сократит объем дальнейших вычислений.
Разумеется, это был очень простой пример. Чтобы разобраться с другими тонкостями (например, с корнями), надо выполнить два несложных шага:
Для некоторых эти два правила звучат угрожающе, поэтому разберемся с ними на конкретных примерах. Заодно убедимся, насколько это упрощает решение.
Задача. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1.
Очевидно, речь идет о косинусе угла между двумя прямыми. Введем стандартную систему координат: начало координат поместим в точку A, единичный отрезок равен AB = 1. Ось x направим вдоль AB, ось z — вдоль AA1, а ось y расположим так, чтобы плоскость OXY совпадала с плоскостью ABC. Найдем координаты вектора AD:
A = (0; 0; 0) — начало координат.
Точка D — середина отрезка A1B1, поэтому нам потребуются точки A1 и B1:
A1 = (0; 0; 1);
B1 = (1; 0; 1);
D = (0,5; 0; 1) — координаты середины отрезка равны среднему арифметическому координат концов. Итак, находим координаты вектора AD:
AD = (0,5 − 0; 0 − 0; 1 − 1) = (0,5; 0; 1) → (1; 0; 2) — избавились от дробей, умножив координаты вектора на 2.
Теперь найдем координаты вектора BC1:
B = (1; 0; 0);
Координаты вектора BC1 также оптимизировали, умножив все на 2. Больше тут ничего не упростить, иррациональность убрать не получится. Остается найти косинус:
Задача. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E и F — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BF.
Снова ищем косинус угла между двумя прямыми. Введем систему координат следующим образом: начало координат — точка A, единичный отрезок равен AB = 1. Ось x направим вдоль AB, ось y — вдоль AD, а ось z направим вверх, т.е. перпендикулярно плоскости ABC. Найдем координаты векторов AE и BF.
Координаты точек A = (0; 0; 0) и B = (1; 0; 0) находятся легко. Далее, по условию, точки E и F — середины отрезков SB и SC соответственно, поэтому для нахождения их координат нам потребуются точки C и S:
C = (1; 1; 0);
Откуда взялись корни и как из среднего арифметического получились координаты точек E и F, предлагаю читателям подумать самостоятельно. Подсказка: проведите диагональ основания, высоту и воспользуйтесь теоремой Пифагора.
А мы тем временем найдем и оптимизируем координаты векторов AE и BF:
В обоих случаях координаты вектора умножены на 4, чтобы избавиться от дробей. Осталось найти косинус:
Многие спрашивают: «А примут ли у меня такое решение проверяющие?» Конечно, примут — при условии, что все будет правильно оформлено. Вот основные рекомендации по оформлению: