Задание 6 — геометрия с элементами тригонометрии

Сегодня рассмотрим задачи B8 c тригонометрией в ее классическом понимании, где изучаются обычные прямоугольные треугольники. Поэтому никаких тригонометрических окружностей и отрицательных углов сегодня не будет — только обычные синусы и косинусы.

Такие задачи составляют примерно 30% от общего числа. Помните: если в задаче B8 хоть раз упоминается угол π, она решается совсем другими способами. Мы обязательно рассмотрим их в ближайшее время. А сейчас — главное определение урока:

Треугольник — фигура на плоскости, состоящая из трех точек и отрезков, которые их соединяют. Фактически, это замкнутая ломаная из трех звеньев. Точки называются вершинами треугольника, а отрезки — сторонами. Важно заметить, что вершины не должны лежать на одной прямой, иначе треугольник вырождается в отрезок.

Довольно часто треугольником называют не только саму ломаную, но и часть плоскости, которая этой ломаной ограничена. Таким образом, можно определить площадь треугольника.

Два треугольника называются равными, если один можно получить из другого путем одного или нескольких движений плоскости: сдвига, поворота или симметрии. Кроме того, существует понятие подобных треугольников: их углы равны, а соответствующие стороны пропорциональны...

Все, что написано выше, можно было не читать. Потому что это не нужно. Вы что, не знаете, что такое треугольник? Вы действительно не знаете, как он выглядит? Хорошо, я сейчас покажу.

Прямоугольный треугольник ABC

Это треугольник ABC. Более того, это прямоугольный треугольник: в нем ∠C = 90°. Именно такие чаще всего и встречаются в задаче B8.

Все, что надо знать для решения задачи B8 — это несколько простых фактов из геометрии и тригонометрии, а также общая схема решения, в которой эти факты используются. Затем останется просто «набить руку».

Начнем с фактов. Они разбиты на три группы:

  1. Определения и следствия из них;
  2. Основные тождества;
  3. Симметрии в треугольнике.

Нельзя сказать, что какая-то из этих групп важнее, сложнее или проще. Но информация, которая в них содержится, позволяет решить любую задачу B8. Поэтому знать надо все. Итак, поехали!

Группа 1: определения и следствия из них

Прямоугольный треугольник ABC

Рассмотрим треугольник ABC, где ∠C — прямой. Для начала — определения:

Синус угла — это отношение противолежащего катета к гипотенузе.

Косинус угла — это отношение прилежащего катета к гипотенузе.

Тангенс угла — это отношение противолежащего катета к прилежащему.

Один угол или отрезок может входить в разные прямоугольные треугольники. Более того, очень часто один и тот же отрезок является катетом в одном треугольнике и гипотенузой — в другом. Но об этом — дальше, а пока будем работать с обычным углом А. Тогда:

  1. sin A = BC : AB;
  2. cos A = AC : AB;
  3. tg A = BC : AC.

Основные следствия из определения:

  1. sin A = cos B; cos A = sin B — самые часто используемые следствия
  2. tg A = sin A : cos A — связывает тангенс, синус и косинус одного угла
  3. Если ∠A + ∠B = 180°, т.е. углы смежные, то: sin A = sin B; cos A = −cos B.

Хотите — верьте, хотите — нет, но этих фактов достаточно, чтобы решить примерно треть всех тригонометрических задач B8.

Группа 2: основные тождества

Первое и самое главное тождество — теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов. Применительно к треугольнику ABC, рассмотренному выше, эту теорему можно записать так:

AC 2 + BC 2 = AB 2

И сразу — небольшое замечание, которое убережет читателя от множества ошибок. Когда решаете задачу, всегда (слышите, всегда!) записывайте теорему Пифагора именно в таком виде. Не пытайтесь сразу выражать катет, как это обычно требуется. Возможно, вы сэкономите пару строчек вычислений, но именно на этой «экономии» было потеряно больше баллов, чем где-либо еще в геометрии.

Второе тождество — из тригонометрии. Выглядит следующим образом:

sin 2 A + cos 2 A = 1

Оно так и называется: основное тригонометрическое тождество. С его помощью можно через синус выразить косинус и наоборот.

Группа 3: Симметрии в треугольнике

То, что написано ниже, относится только к равнобедренным треугольникам. Если в задаче таковой не фигурирует, то для решения достаточно фактов из первых двух групп.

Равнобедренный треугольник ABC

Итак, рассмотрим равнобедренный треугольник ABC, где AC = BC. Проведем к основанию высоту CH. Получим следующие факты:

  1. A = ∠B. Как следствие, sin A = sin B; cos A = cos B; tg A = tg B.
  2. CH — не только высота, но и биссектриса, т.е. ∠ACH = ∠BCH. Аналогично, равны и тригонометрические функции этих углов.
  3. Также CH — это медиана, поэтому AH = BH = 0,5 · AB.

Теперь, когда все факты рассмотрены, перейдем непосредственно к методам решения.

Общая схема решения задачи B8

Геометрия отличается от алгебры тем, что в ней нет простых и универсальных алгоритмов. Каждую задачу приходится решать с нуля — и в этом ее сложность. Тем не менее, общие рекомендации дать все-таки можно.

Для начала, следует обозначить неизвестную сторону (если таковая имеется) за X. Затем применяем схему решения, которая состоит из трех пунктов:

  1. Если в задаче есть равнобедренный треугольник, применить к нему все возможные факты из третьей группы. Найдите равные углы и выразите их тригонометрические функции. Кроме того, равнобедренный треугольник редко бывает прямоугольным. Поэтому ищите в задаче прямоугольные треугольники — они там обязательно есть.
  2. Применить к прямоугольному треугольнику факты из первой группы. Конечная цель — получить уравнение относительно переменной X. Найдем X — решим задачу.
  3. Если фактов из первой группы оказалось недостаточно, применяем факты из второй группы. И снова ищем X.

Примеры решения задач

А теперь попробуем с помощью полученных знаний решить наиболее распространенные задачи B8. Не удивляйтесь, что с таким арсеналом текст решения окажется не намного длиннее, чем исходное условие. И это радует :)

Задача. В треугольнике ABC угол C равен 90°, AB = 5, BC = 3. Найдите cos A.

Прямоугольный треугольник ABC

По определению (группа 1), cos A = AC : AB. Гипотенуза AB нам известна, а вот катет AC придется искать. Обозначим его AC = x.

Переходим к группе 2. Треугольник ABC — прямоугольный. По теореме Пифагора:

AC 2 + BC 2 = AB 2;
x2 + 32 = 52;
x2 = 25 − 9 = 16;
x = 4.

Теперь можно найти косинус:

cos A = AC : AB = 4 : 5 = 0,8.

Задача. В треугольнике ABC угол B равен 90°, cos A = 4/5, BC = 3. BH — высота. Найдите AH.

Прямоугольный треугольник и высота

Обозначим искомую сторону AH = x и рассмотрим треугольник ABH. Он прямоугольный, причем ∠AHB = 90° по условию. Поэтому cos A = AH : AB = x : AB = 4/5. Это пропорция, ее можно переписать так: 5 · x = 4 · AB. Очевидно, мы найдем x, если будем знать AB.

Рассмотрим треугольник ABC. Он также прямоугольный, причем cos A = AB : AC. Ни AB, ни AC нам не известны, поэтому переходим ко второй группе фактов. Запишем основное тригонометрическое тождество:

sin 2 A + cos 2 A = 1;
sin 2 A = 1 − cos 2 A = 1 − (4/5)2 = 1 − 16/25 = 9/25.

Поскольку тригонометрические функции острого угла положительны, получаем sin A = 3/5. С другой стороны, sin A = BC : AC = 3 : AC. Получаем пропорцию:

3 : AC = 3 : 5;
3 · AC = 3 · 5;
AC = 5.

Итак, AC = 5. Тогда AB = AC · cos A = 5 · 4/5 = 4. Наконец, находим AH = x:

5 · x = 4 · 4;
x = 16/5 = 3,2.

Задача. В треугольнике ABC AB = BC, AC = 5, cos C = 0,8. Найдите высоту CH.

Равнобедренный треугольник с тупым углом

Обозначим искомую высоту CH = x. Перед нами равнобедренный треугольник ABC, в котором AB = BC. Следовательно, из третьей группы фактов имеем:

A = ∠C ⇒ cos A = cos C = 0,8

Рассмотрим треугольник ACH. Он прямоугольный (∠H = 90°), причем AC = 5 и cos A = 0,8. По определению, cos A = AH : AC = AH : 5. Получаем пропорцию:

AH : 5 = 8 : 10;
10 · AH = 5 · 8;
AH = 40 : 10 = 4.

Осталось воспользоваться второй группой фактов, а именно теоремой Пифагора для треугольника ACH:

AH 2 + CH 2 = AC 2;
42 + x2 = 52;
x2 = 25 − 16 = 9;
x = 3.

Задача. В прямоугольном треугольнике ABCB = 90°, AB = 32, AC = 40. Найдите синус угла CAD.

Прямоугольный треугольник и смежный угол

Поскольку нам известна гипотенуза AC = 40 и катет AB = 32, можно найти косинус угла A: cos A = AB : AC = 32 : 40 = 0,8. Это был факт из первой группы.

Зная косинус, можно найти синус через основное тригонометрическое тождество (факт из второй группы):

sin 2 A + cos 2 A = 1;
sin 2 A = 1 − cos 2 A = 1 − 0,82 = 0,36;
sin A = 0,6.

При нахождении синуса вновь был использован тот факт, что тригонометрические функции острого угла положительны. Осталось заметить, что углы BAC и CAD смежные. Из первой группы фактов имеем:

BAC + ∠CAD = 180°;
sin CAD = sin BAC = sin A = 0,6.

Задача. В треугольнике ABC AC = BC = 5, AB = 8, CH — высота. Найдите tg A.

Равнобедренный треугольник ABC

Треугольник ABC — равнобедренный, CH — высота, поэтому заметим, что AH = BH = 0,5 · AB = 0,5 · 8 = 4. Это факт из третьей группы.

Теперь рассмотрим треугольник ACH: в нем ∠AHC = 90°. Можно выразить тангенс: tg A = CH : AH. Но AH = 4, поэтому остается найти сторону CH, которую обозначим CH = x. По теореме Пифагора (факт из группы 2) имеем:

AH 2 + CH 2 = AC 2;
42 + x2 = 52;
x2 = 25 − 16 = 9;
x = 3.

Теперь все готово, чтобы найти тангенс: tg A = CH : AH = 3 : 4 = 0,75.

Задача. В треугольнике ABC AC = BC, AB = 6, cos A = 3/5. Найдите высоту AH.

Равнобедренный треугольник и высота

Обозначим искомую высоту AH = x. Снова треугольник ABC — равнобедренный, поэтому заметим, что ∠A = ∠B, следовательно, cos B = cos A = 3/5. Это факт из третьей группы.

Рассмотрим треугольник ABH. По условию, он прямоугольный (∠AHB = 90°), причем известна гипотенуза AB = 6 и cos B = 3/5. Но cos B = BH : AB = BH : 6 = 3/5. Получили пропорцию:

BH : 6 = 3 : 5;
5 · BH = 6 · 3;
BH = 18/5 = 3,6.

Теперь найдем AH = x по теореме Пифагора для треугольника ABH:

AH 2 + BH 2 = AB 2;
x2 + 3,62 = 62;
x2 = 36 − 12,96 = 23,04;
x = 4,8.

Дополнительные соображения

Бывают нестандартные задачи, где рассмотренные выше факты и схемы бесполезны. Увы, в таком случае нужен действительно индивидуальный подход. Подобные задачи любят давать на всевозможных «пробных» и «демонстрационных» экзаменах.

Ниже приведены две реальные задачи, которые предлагались на пробном ЕГЭ в Москве. Справились с ними единицы, что свидетельствует о высокой сложности этих задач.

Задача. В прямоугольном треугольнике ABC из угла C = 90° провели медиану и высоту. Известно, что ∠A = 23°. Найдите ∠MCH.

Прямоугольный треугольник, высота и медиана

Заметим, что медиана CM проведена к гипотенузе AB, поэтому M — центр описанной окружности, т.е. AM = BM = CM = R, где R — радиус описанной окружности. Следовательно, треугольник ACM — равнобедренный, и ∠ACM = ∠CAM = 23°.

Теперь рассмотрим треугольники ABC и CBH. По условию, оба треугольника прямоугольные. Кроме того, ∠B — общий. Следовательно, треугольники ABC и CBH подобны по двум углам.

В подобных треугольника соответствующие элементы пропорциональны. В частности:

BCH = BAC = 23°

Наконец, рассмотрим ∠C. Он прямой, и, кроме того, ∠C = ∠ACM + ∠MCH + ∠BCH. В этом равенстве ∠MCH — искомый, а ∠ACM и ∠BCH известны и равны 23°. Имеем:

90° = 23° + MCH + 23°;
MCH = 90° − 23° − 23° = 44°.

Задача. Периметр прямоугольника равен 34, а площадь равна 60. Найдите диагональ этого прямоугольника.

Прямоугольник ABCD и диагональ

Обозначим стороны прямоугольника: AB = x, BC = y. Выразим периметр:

PABCD = 2 · (AB + BC) = 2 · (x + y) = 34;
x + y = 17.

Аналогично выразим площадь: SABCD = AB · BC = x · y = 60.

Теперь рассмотрим треугольник ABC. Он прямоугольный, поэтому запишем теорему Пифагора:

AB 2 + BC 2 = AC2;
AC 2 = x2 + y2.

Заметим, что из формулы квадрата разности следует равенство:

x2 + y2 = (x + y)2 − 2 · x · y = 172 − 2 · 60 = 289 − 120 = 169

Итак, AC 2 = 169, откуда AC = 13.

Смотрите также:
  1. Задача B8: отрезки и углы в треугольниках
  2. Центральные и вписанные углы в задании 6