Сегодня мы научимся быстро без калькулятора возводить большие выражения в квадрат. Под большими я подразумеваю числа в пределах от десяти до ста. Большие выражения крайне редко встречаются в настоящих задачах, а значения меньше десяти вы и так умеете считать, потому что это обычная таблица умножения. Материал сегодняшнего урока будет полезен достаточно опытным ученикам, потому что начинающие ученики просто не оценят скорость и эффективность этого приема.
Для начала давайте разберемся вообще, о чем идет речь. Предлагаю для примера сделать возведение произвольного числового выражения, как мы обычно это делаем. Скажем, 34. Возводим его, умножив само на себя столбиком:
\[{{34}^{2}}=\times \frac{34}{\frac{34}{+\frac{136}{\frac{102}{1156}}}}\]
1156 — это и есть квадрат 34.
Проблему данного способа можно описать двумя пунктами:
1) он требует письменного оформления;
2) в процессе вычисления очень легко допустить ошибку.
Сегодня мы научимся быстрому умножению без калькулятора, устно и практически без ошибок.
Итак, приступим. Для работы нам потребуется формула квадрата суммы и разности. Давайте запишем их:
\[{{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[{{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
Что нам это дает? Дело в том, что любое значение в пределах от 10 до 100 представимо в виде числа $a$, которое делится на 10, и числа $b$, которое является остатком от деления на 10.
Например, 28 можно представить в следующем виде:
\[\begin{align}& {{28}^{2}} \\& 20+8 \\& 30-2 \\\end{align}\]
Аналогично представляем оставшиеся примеры:
\[\begin{align}& {{51}^{2}} \\& 50+1 \\& 60-9 \\\end{align}\]
\[\begin{align}& {{42}^{2}} \\& 40+2 \\& 50-8 \\\end{align}\]
\[\begin{align}& {{42}^{2}} \\& 40+2 \\& 50-8 \\\end{align}\]
\[\begin{align}& {{77}^{2}} \\& 70+7 \\& 80-3 \\\end{align}\]
\[\begin{align}& {{21}^{2}} \\& 20+1 \\& 30-9 \\\end{align}\]
\[\begin{align}& {{26}^{2}} \\& 20+6 \\& 30-4 \\\end{align}\]
\[\begin{align}& {{39}^{2}} \\& 30+9 \\& 40-1 \\\end{align}\]
\[\begin{align}& {{81}^{2}} \\& 80+1 \\& 90-9 \\\end{align}\]
Что дает нам такое представление? Дело в том, что при сумме или разности, мы можем применить вышеописанные выкладки. Разумеется, чтобы сократить вычисления, для каждого из элементов следует выбрать выражение с наименьшим вторым слагаемым. Например, из вариантов $20+8$ и $30-2$ следует выбрать вариант $30-2$.
Аналогично выбираем варианты и для остальных примеров:
\[\begin{align}& {{28}^{2}} \\& 30-2 \\\end{align}\]
\[\begin{align}& {{51}^{2}} \\& 50+1 \\\end{align}\]
\[\begin{align}& {{42}^{2}} \\& 40+2 \\\end{align}\]
\[\begin{align}& {{77}^{2}} \\& 80-3 \\\end{align}\]
\[\begin{align}& {{21}^{2}} \\& 20+1 \\\end{align}\]
\[\begin{align}& {{26}^{2}} \\& 30-4 \\\end{align}\]
\[\begin{align}& {{39}^{2}} \\& 40-1 \\\end{align}\]
\[\begin{align}& {{81}^{2}} \\& 80+1 \\\end{align}\]
Почему следует стремиться к уменьшению второго слагаемого при быстром умножении? Все дело в исходных выкладках квадрата суммы и разности. Дело в том, что слагаемое $2ab$ с плюсом или с минусом труднее всего считается при решении настоящих задач. И если множитель $a$, кратный 10, всегда перемножается легко, то вот с множителем $b$, который является числом в пределах от одного до десяти, у многих учеников регулярно возникают затруднения.
Можете самостоятельно попробовать рассчитать оба разложения, и вы убедитесь, что разложение с наименьшим вторым слагаемым считается проще. А мы перейдем к примерам, которые посчитаем без калькулятора:
\[{{28}^{2}}={{(30-2)}^{2}}=200-120+4=784\]
\[{{51}^{2}}={{(50+1)}^{2}}=2500+100+1=2601\]
\[{{42}^{2}}={{(40+2)}^{2}}=1600+160+4=1764\]
\[{{77}^{2}}={{(80-3)}^{2}}=6400-480+9=5929\]
\[{{21}^{2}}={{(20+1)}^{2}}=400+40+1=441\]
\[{{26}^{2}}={{(30-4)}^{2}}=900-240+16=676\]
\[{{39}^{2}}={{(40-1)}^{2}}=1600-80+1=1521\]
\[{{81}^{2}}={{(80+1)}^{2}}=6400+160+1=6561\]
Вот так за три минуты мы сделали умножение восьми примеров. Это меньше 25 секунд на каждое выражение. В реальности после небольшой тренировки вы будете считать еще быстрее. На подсчет любого двухзначного выражения у вас будет уходить не более пяти-шести секунд.
Но и это еще не все. Для тех, кому показанный прием кажется недостаточно быстрым и недостаточно крутым, предлагаю еще более быстрый способ умножения, который однако работает не для всех заданий, а лишь для тех, которые на единицу отличаются от кратных 10. В нашем уроке таких значений четыре: 51, 21, 81 и 39.
Казалось бы, куда уж быстрее, мы и так считаем их буквально в пару строчек. Но, на самом деле, ускориться можно, и делается это следующим образом. Записываем значение, кратное десяти, которое наиболее близкое нужному. Например, возьмем 51. Поэтому для начала возведем пятьдесят:
\[{{50}^{2}}=2500\]
Значения, кратные десяти, поддаются возведению в квадрат намного проще. А теперь к исходному выражению просто добавляем пятьдесят и 51. Ответ получится тот же самый:
\[{{51}^{2}}=2500+50+51=2601\]
И так со всеми числами, отличающимися на единицу.
Если значение, которое мы ищем, больше, чем то, которое мы считаем, то к полученному квадрату мы прибавляем числа. Если же искомое число меньше, как в случае с 39, то при выполнении действия, из квадрата нужно вычесть значение. Давайте потренируемся без использования калькулятора:
\[{{21}^{2}}=400+20+21=441\]
\[{{39}^{2}}=1600-40-39=1521\]
\[{{81}^{2}}=6400+80+81=6561\]
Как видите, во всех случаях ответы получаются одинаковыми. Более того, данный прием применим к любым смежным значениям. Например:
\[\begin{align}& {{26}^{2}}=625+25+26=676 \\& 26=25+1 \\\end{align}\]
При этом нам совсем не нужно вспоминать выкладки квадратов суммы и разности и использовать калькулятор. Скорость работы выше всяких похвал. Поэтому запоминайте, тренируйтесь и используйте на практике.
С помощью этого приема вы сможете легко делать умножение любых натуральных чисел в пределах от 10 до 100. Причем все расчеты выполняются устно, без калькулятора и даже без бумаги!
Для начала запомните квадраты значений, кратных 10:
\[\begin{align}& {{10}^{2}}=100,{{20}^{2}}=400,{{30}^{2}}=900,..., \\& {{80}^{2}}=6400,{{90}^{2}}=8100. \\\end{align}\]
Далее — выкладки квадрата суммы или разности, в зависимости от того, к какому опорному значению ближе наше искомое выражение. Например:
\[\begin{align}& {{34}^{2}}={{(30+4)}^{2}}={{30}^{2}}+2\cdot 30\cdot 4+{{4}^{2}}= \\& =900+240+16=1156; \\\end{align}\]
\[\begin{align}& {{27}^{2}}={{(30-3)}^{2}}={{30}^{2}}-2\cdot 30\cdot 3+{{3}^{2}}= \\& =900-180+9=729. \\\end{align}\]
Но это еще не все! С помощью данных выражений моментально можно сделать возведение в квадрат чисел, «смежных» с опорными. Например, мы знаем 152 (опорное значение), а надо найти 142 (смежное число, которое на единицу меньше опорного). Давайте запишем:
\[\begin{align}& {{14}^{2}}={{15}^{2}}-14-15= \\& =225-29=196. \\\end{align}\]
Обратите внимание: никакой мистики! Квадраты чисел, отличающиеся на 1, действительно получаются из умножения самих на себя опорных чисел, если вычесть или добавить два значения:
\[\begin{align}& {{31}^{2}}={{30}^{2}}+30+31= \\& =900+61=961. \\\end{align}\]
Почему так происходит? Давайте запишем формулу квадрата суммы (и разности). Пусть $n$ — наше опорное значение. Тогда они считаются так:
\[\begin{align}& {{(n-1)}^{2}}=(n-1)(n-1)= \\& =(n-1)\cdot n-(n-1)= \\& =={{n}^{2}}-n-(n-1) \\\end{align}\]
— это и есть формула.
\[\begin{align}& {{(n+1)}^{2}}=(n+1)(n+1)= \\& =(n+1)\cdot n+(n+1)= \\& ={{n}^{2}}+n+(n+1) \\\end{align}\]
— аналогичная формула для чисел, больших на 1.
Надеюсь, данный прием сэкономит вам время на всех ответственных контрольных и экзаменах по математике. А у меня на этом все. До встречи!