Очень часто в уравнениях под знаком модуля стоят довольно сложные конструкции, которые было бы крайне затруднительно раскрывать, а затем решать «напролом». Для таких случаев существует множество приемов и замечаний, позволяющих значительно ускорить вычисления.
Одним из таких приемов является учет области значений модуля (учителя называют это решение методом следствий). Суть его можно описать одним простым предложением: «Сумма неотрицательных чисел равна нулю тогда и только тогда, когда каждое из этих чисел равно нулю».
Сегодня мы продолжаем изучать конструкции, содержащие знак модуля функции и переходим уже к более сложным конструкциям, когда ихдва, либо само уравнение содержит нестандартную функцию.
Для начала вспомним определение модуля: модулем числа $x$ называется либо само это число (при условии, что оно неотрицательное), либо минус это число, если оно отрицательно:
\[\left| x \right|=\left\{ \begin{align}& x,x\ge 0 \\& -x,x<0 \\\end{align} \right.\]
Данная запись является алгебраическим определением, потому что здесь используется только алгебраическая терминология и никак не привлекается геометрия. И именно это определение позволяет нам заключить следующий факт: модуль числа всегда неотрицателен:
\[\left| x \right|\ge 0\]
Именно поэтому его иногда еще называют абсолютным значением, т.е. расстоянием от 0 до этого числа на числовой прямой. И именно тот факт, что модуль функции всегда является неотрицательным числом, позволяет решить целый класс задач, которые иначе решались бы весьма проблематично.
\[\left| x-{{x}^{3}} \right|+\left| {{x}^{2}}+x-2 \right|=0\]
Чтобы решить такое выражение, давайте для начала вспомним, как решается простейшая конструкция с модулем, т.е уравнение вида $\left| f \right|=g$.
Решаются она довольно просто. Рассматривается два случая: в первом случае $f$ неотрицательно — в этом случае модуль функции снимается без всяких изменений и получается, что $f$ равно $g$. А во втором случае $f$ отрицательно — в этом случае модуль раскрывается со знаком «минус», как мы уже знаем из определения. Запишем совокупность систем:
\[\left| f \right|=g=>\left[ \begin{align}& \left\{ \begin{align}& f\ge 0 \\& f=g \\\end{align} \right. \\& \left\{ \begin{align}& f<0 \\& -f=g \\\end{align} \right. \\\end{align} \right.\]
Но все это работает только при условии, что модуль функции в выражении один, а у нас сегодня сразу два. Что делать в такой ситуации?
Давайте заметим, что при сложении двух модулей возникает выражение, значение которого 0. Но, с другой стороны, мы можем записать следующее:
\[\left| x-{{x}^{3}} \right|\ge 0\]
\[\left| {{x}^{2}}+x-2 \right|\ge 0\]
В этом случае сумма вышеописанных двух элементов также будет давать некое число (назовем его $k$), которое больше или равняется 0. При этом от нас требуется, чтобы оно строго равнялось 0. А это значит, что нас устроит только тот вариант, когда каждый из модулей равен 0, т.е. мы можем записать:
\[\left| x-{{x}^{3}} \right|=0\]
\[\left| {{x}^{2}}+x-2 \right|=0\]
Другими словами, сумма двух чисел, каждое из которых не меньше 0, дает в сумме ноль только в том случае, когда каждое из них равняется 0, т.е. требования должны выполняться одновременно. Поэтому запишем систему:
\[\left\{ \begin{align}& \left| x-{{x}^{3}} \right|=0 \\& \left| {{x}^{2}}+x-2 \right|=0 \\\end{align} \right.\]
Модуль функции равен 0, когда подмодульное выражение равно 0, т.е:
\[\left\{ \begin{align}& x-{{x}^{3}}=0 \\& {{x}^{2}}+x-2=0 \\\end{align} \right.\]
Давайте решим каждое из полученных выражений отдельно. Решаем первое:
\[x\left( {{1}^{2}}-{{x}^{2}} \right)=0\]
\[x\left( 1-x \right)\left( 1+x \right)=0\]
\[{{x}_{1}}=0\]
\[{{x}_{2}}=1\]
\[{{x}_{3}}=-1\]
При трех таких значениях тождество обнуляется.
Теперь разберемся со вторым выражением. Будем решать его при помощи формулы Виета:
\[{{x}^{2}}+x-2=0\]
\[\left( x+2 \right)\left( x-1 \right)=0\]
\[{{x}_{1}}=-2\]
\[x=1\]
А теперь вспоминаем, что мы решаем систему уравнений, т.е. нужно из первого и из второго наборов выбрать корни, которые принадлежат каждому из этих наборов. Очевидно, что такой корень только один — $x=1$.
Итого решением первого выражения является единственный корень $x=1$.
Как видите, такое решение оказалось существенно проще стандартного подхода. Здесь достаточно просто заметить,что сумма двух неотрицательных чисел равняется 0 только тогда, когда каждое из этих чисел имеет значение 0.
Переходим ко второй конструкции:
\[\left| x-2 \right|=-{{x}^{6}}\]
На первый взгляд, можно сказать, что данная конструкция является простейшим уравнением. И, строго говоря, оно хорошо решается по выше записанной формуле, т.е. переходом от выражения с модулем функции к совокупности двух систем. Однако нас смущает степенная функция — степень слишком большая. Поэтому давайте заметим, что функция $f\left( x \right)={{x}^{6}}$ является не просто четной, но и еще неотрицательной на всей числовой оси. А это значит, что $-{{x}^{6}}$ всегда будет либо отрицательной, либо равняться 0. Однако с другой стороны от знака равенства у нас стоит модуль функции — а он всегда неотрицателен. Это значит что, слева значение больше или равно нулю, а справа — меньше или равно. И от нас требуется узнать, когда эти значения друг другу тождественны. Очевидно, что такими они могут быть только тогда, когда каждое из них равняется 0, потому что в противном случае они будут лежать по разные стороны от разделяющего 0, т.е. $\left| x-2 \right|$ будет постоянно отклоняться вправо, а $-{{x}^{6}}$ — влево. Поэтому наше выражением может быть переписано следующим образом:
\[\left\{ \begin{align}& \left| x-2 \right|=0 \\& -{{x}^{6}}=0 \\\end{align} \right.\]
Давайте решим эти конструкции:
\[\left\{ \begin{align}& x-2=0 \\& {{x}^{6}}=0 \\\end{align} \right.\]
Решаем каждое из этих выражений:
\[\left\{ \begin{align}& x=2 \\& x=0 \\\end{align} \right.\]
Мы получаем, что корень должен быть одновременно равен и 2 и 0. Это невозможно, поэтому решением данного выражения является пустое множество. Пусть вас не смущают подобные ответы при решении задач с модулями. Как и при работе с любыми другими функциями, накладывающими ограничения на область определения или значения в рамках задачи, в процессе решения сложных выражений с модулями функции вполне может оказаться, что этих решений просто не существует.
Как пример, второе вырадением может быть сведено к равенству первого вида следующим образом:
\[\left| x-2 \right|+{{x}^{6}}=0\]
Мы снова видим сумму двух функций, каждая из которых неотрицательна. Запомните этот прием, он очень эффективен при работе со всевозможными функциями, о которых точно известно, что они принимают лишнее отрицательное значение.