Помните, как в самом первом уроке про десятичные дроби я говорил, что существуют числовые дроби, не представимые в виде десятичных (см. урок «Десятичные дроби»)? Мы еще учились раскладывать знаменатели дробей на множители, чтобы проверить, нет ли там чисел, отличных от 2 и 5.
Так вот: я наврал. И сегодня мы научимся переводить абсолютно любую числовую дробь в десятичную. Заодно познакомимся с целым классом дробей с бесконечной значащей частью.
Периодическая десятичная дробь — это любая десятичная дробь, у которой:
- Значащая часть состоит из бесконечного количества цифр;
- Через определенные интервалы цифры в значащей части повторяются.
Набор повторяющихся цифр, из которых состоит значащая часть, называется периодической частью дроби, а количество цифр в этом наборе — периодом дроби. Остальной отрезок значащей части, который не повторяется, называется непериодической частью.
Поскольку определений много, стоит подробно рассмотреть несколько таких дробей:
Эта дробь встречается в задачах чаще всего. Непериодическая часть: 0; периодическая часть: 3; длина периода: 1.
Непериодическая часть: 0,58; периодическая часть: 3; длина периода: снова 1.
Непериодическая часть: 1; периодическая часть: 54; длина периода: 2.
Непериодическая часть: 0; периодическая часть: 641025; длина периода: 6. Для удобства повторяющиеся части отделены друг от друга пробелом — в настоящем решении так делать не обязательно.
Непериодическая часть: 3066; периодическая часть: 6; длина периода: 1.
Как видите, определение периодической дроби основано на понятии значащей части числа. Поэтому если вы забыли что это такое, рекомендую повторить — см. урок «Умножение и деление десятичных дробей».
Рассмотрим обыкновенную дробь
Чтобы задать периодическую десятичную дробь, надо найти ее периодическую и непериодическую часть. Как? Переведите дробь в неправильную, а затем разделите числитель на знаменатель «уголком».
При этом будет происходить следующее:
Вот и все! Повторяющиеся цифры после десятичной точки обозначаем периодической частью, а то, что стоит спереди — непериодической.
Задача. Переведите обыкновенные дроби в периодические десятичные:
Все дроби без целой части, поэтому просто делим числитель на знаменатель «уголком»:
Как видим, остатки повторяются. Запишем дробь в «правильном» виде:
В итоге получается дробь:
Записываем в нормальном виде:
Получаем дробь:
Рассмотрим периодическую десятичную дробь
Задача. Приведите к обыкновенной неправильной дроби числа:
- 9,(6);
- 32,(39);
- 0,30(5);
- 0,(2475).
Работаем с первой дробью:
В скобках содержится лишь одна цифра, поэтому период
10X = 10 · 9,6666 ... = 96,666 ...
Вычитаем исходную дробь и решаем уравнение:
10X − X = 96,666 ... − 9,666 ... = 96 − 9 = 87;
9X = 87;
X = 87/9 = 29/3.
Теперь разберемся со второй дробью. Итак,
Период k = 2, поэтому умножаем все
100X = 100 · 32,393939 ... = 3239,3939 ...
Снова вычитаем исходную дробь и решаем уравнение:
100X − X =
99X = 3207;
X = 3207/99 = 1069/33.
Приступаем к третьей дроби:
Период k = 1 ⇒ умножаем все на 10k = 101 = 10;
10X = 10 · 0,30555 ... = 3,05555 ...
10X − X =
9X = 11/4;
X = (11/4) : 9 = 11/36.
Наконец, последняя дробь:
k = 4 ⇒
10 000X = 10 000 · 0,2475 2475 = 2475,2475 ...
10 000X − X = 2475,2475 ... − 0,2475 2475 ... = 2475;
9999X = 2475;
X = 2475 : 9999 = 25/101.